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Considerable interest has recently arisen in the one-electron
oxidations of DNA in connection with DNA damage caused by
ionizing radiation, oxidizing agents, two-photon photoionization
by a high-intensity laser pulse, and photoirradiation with photo-
sensitizers.1 We and others have found a common feature in that
one-electron oxidation of DNA selectively generates piperidine-
sensitive alkaline-labile sites at the 5′-guanine (G) of 5′-GG-3′
sequences.2,3 8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxoG) has
been repeatedly claimed to be the major oxidation product

ultimately leading to the piperidine-dependent G cleavage during
the one-electron photooxidation of duplex DNA in the presence
of various electron-accepting photosensitizers.4 Recently, Cullis
et al. have demonstrated that the 8-oxoG-containing site is not
efficiently cleaved by hot piperidine treatment (90°C, 20 min).5

While the alkaline-labile sites have been suggested to be 2,2-
diaminooxazolone (Z) and/or 2-aminoimidazolone (Iz) containing
sites,1f,5 which were already identified as the oxidation products
of deoxyguanosine by Cadet et al.,6 the direct evidence for the
formation of these sites in double-strand DNA has not been
documented.

To elucidate the real structure of the alkaline-labile site derived
from the guanine cation radical, we have carried out the detailed
product analysis of photoirradiated 5′-d(TTGGTA)-3′ and calf
thymus DNA in the presence of riboflavin. We found that the
Iz-containing oligomer is produced as a major isolatable product
and the 8-oxoG-containing oligomer is only a minor product.

Figure 1a shows the reverse phase HPLC profile of photoir-
radiated single-stranded 5′-d(TTGGTA)-3′ in the presence of
riboflavin, showing the formation of two major peaks (peaks 1
and 2) eluted at 35.1 and 37.9 min, respectively.7 Prolonged low
temperature digestion (0°C, 15 h) of both products provided
exactly the same HPLC profile showing the formation of dG,
dT, dA, and Iz in a ratio of 1:1:3:1.8 Electrospray mass spectra
(1783, ESMS) confirmed that one G of 5′-d(TTGGTA)-3′ is
oxidized to Iz in both products. Hot piperidine treatment (1 M,
90 °C, 20 min) of peak 1 gave TTGp and pTA, whereas the same
treatment of peak 2 gave TTp and pGTA, indicating that the
structures of peaks 1 and 2 were 5′-d(TTGIzGTA)-3′ (1) and 5′-
d(TTIzGTA)-3′ (2), respectively. A similar procedure for the
isolated peak 3 demonstrated that its structure is 5′-d(TTIzIzTA)-
3′ (3). ESMS indicated that both peaks 4 and 5 have the same
molecular weight of 1826. These were also observed in the
photoirradiation of the 8-oxoG-containing hexamers 5′-d(TT8OXO-
GGTA)-3′ and 5′-d(TTG8OXOGTA)-3′ in the presence of ribofla-
vin. However, further characterization of these products has not
been successful due to their thermal instability.

Figure 1b shows the HPLC profile of the riboflavin-sensitized
photooxidation of 5′-d(TTGGTA)-3′ in the presence of the
complementary oligomer 5′-d(ATACCAAA)-3′.9 The results of
the quantitative product analysis are summarized in Table 1. It
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was clearly demonstrated that irradiation of 5′-d(TTGGTA)-3′
at 366 nm with riboflavin produced Iz-containing oligomers1
and2 as major detectable products in both single- and double-
stranded DNA. 8-OxoG-containing oligomers and their further
oxidized products were minor products in both cases.

The formation of dIz was further confirmed by the photooxi-
dation of calf thymus DNA in the presence of riboflavin. Figure

2 shows the quantitative analysis of the enzymatic digestion of
photoirradiated calf thymus DNA. It was found that Iz is
produced in approximately 25% yield based on the consumed
guanine residue, whereas 8-oxoG was obtained only in one-fifth
of Iz over the wide range of irradiation periods. These results
clearly indicated that Iz is a major identified product of the
guanine cation radical in the duplex DNA under atmospheric
conditions.

Preliminary molecular orbital calculations indicated that the
Iz-G base pair possesses a stability comparable with the Watson-
Crick G-C base pair (Figure 3).10 These results indicate an
intriguing possibility that Iz in a template DNA functions such
as C. In fact, G-C transversion has been reported in photosen-
sitizations,γ irradiations, and the Fenton reactions of DNA.11

Further work to examine this possibility is in progress.

Supporting Information Available: Enzymatic digestion profiles of
the photoproduct1-5 and photooxidized calf thymus DNA with riboflavin
and ESMS of1-5 (6 pages, print/PDF). See any current masthead page
for ordering information and Web access instructions.
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Figure 1. HPLC analysis of photoirradiated 5′-d(TTGGTA)-3′ with ribo-
flavin (Rf) in the absence of 5′-d(ATACCAAA)-3′ (a) and the presence
of 5′-d(ATACCAAA)-3′ (b). A reaction mixture containing 5′-d(TTG-
GTA)-3′ (1 mM base concentration) and riboflavin (50µM) with or
without complementary 5′-d(ATACCAAA)-3′ in sodium cacodylate buffer
(pH 7.0) was irradiated at 366 nm under aerobic conditions at 0°C for
2 min. The reaction mixture was analyzed by HPLC. Analysis was carried
out on a CHEMCOBOND 5-ODS-H column (4.6× 150 mm) (elution
with a solvent mixture of 50 mM triethylammonium acetate, 7% (isocratic)
acetonitrile/30 min, 7-9%/30-60 min, and 9% (isocratic)/60-65 min
at a flow rate of 1.0 mL/min).

Table 1. Quantitative Analysis of Products Formed in
Photoirradiated 5′-d(TTGGTA)-3′ with Riboflavin in the Absence
and Presence of 5′-d(ATACCAAA)-3′

product yield (%)a

run oligonucleotide 1 2 3 8-oxodGb

1 TTGGTA 20 19 1.9 0.2
2 TTGGTA/AAACCATA 14 16 5.1 0.4

a Yields were based on consumed hexamer.b The yield of 8-oxodG
obtained by enzymatic digestion of the photolyzate was based on
consumed deoxyguanosine.

Figure 2. Time course of the photooxidation of calf thymus DNA in
the presence of riboflavin. A reaction mixture containing sonicated calf
thymus DNA (1 mM base concentration) and riboflavin (50µM) in
sodium cacodylate buffer (pH 7.0) was irradiated with a transilluminator
(366 nm) under aerobic conditions at 0°C for 0, 5, 10, 15, 20, 25, and
30 min from a distance of 6 cm. The irradiated mixtures were subjected
to low-temparature enzymatic digestion.8 The digested sample was
analyzed by HPLC. Analysis was carried out on Cosmosil 5C18-MS
column (4.6× 150 mm) (elution with a solvent mixture of 50 mM
ammonium formate, 0% (isocratic) acetonitrile/5 min, 0-7%/5-27 min,
and 7% (isocratic)/27-30 min at a flow rate of 1.0 mL/min).

Figure 3. Proposed Iz-G base pair and Watson-Crick C-G base pair.
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